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Fig. 3. Expanded view of the peaks of the magnitudes of the locating vectors
for the balls measured versus distance. The shift of the peaks toward the
source for large balls is easily seen.
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Fig. 4. Computed positions of the peak of the radar-echo, and arg(I'(time))
versus ball diameter. It is seen that small balls appear to be farther away
than their centers. Echoes of large balls move closer to the source. As a
cross-check, the points indicated by X were computed using the first and
last frequencies only.

susceptance in the center. Since the guide wavelength in the
tapered section lengthens, the shunt susceptance appears to be
farther away (group-delay is increased). For very large balls, this
taper is very severe (guides tending toward cutoff), and dominates
over the effect of the shunt susceptance and thus puts the
reflection forward.

The experimental uncertainty in the echo locations is difficult
to state, but repeated measurements produced very similar re-
sults. The individual departures of the points on Fig. 4 from the
smooth fitted curve give an indication of the scatter. As a
cross-check, the point corresponding to the largest, seemingly
anomalous, echo location was computed using only the two
extreme frequencies of the set of eleven, and reproduced the
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Fig. 5. The locating vector evaluated at its maximum, plotted on the Smith-
chart for varying ball sizes. A resemblance to a capacitive obstacle is
recognizable. Note that the locating vector is in the time domain.

trend of the results of the full set, as shown in Fig. 4.

In Fig. 4, the computed phase of the locating vector is shown
at the echo-maxima. For small balls, the phase tends toward
—90°, meaning that small balls may be regarded as lumped
capacitive obstacles, whereas large balls exhibit phases which
approach 180°, the expected value for an impedance which
approaches a short circuit.

The Smith-chart plot of the complex locating vector (Fig. 5)
indicates a quasi-capacitive behavior for all ball sizes. The depar-
ture from purely capacitive loading is attributed to the break-
down of the lumped element approximation as the balls become
larger and the impedance is distributed along the waveguide.
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Propagation on a Sheath Helix in a Coaxially
Layered Lossy Dielectric Medium

MARK J. HAGMANN, MEMBER, IEEE

Abstract —Radial and axial dependence of the azimuthally symimetric
fields in each coaxial layer may be expressed in terms of modified Bessel
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functions and complex exponentials, respectively. There are two unknown
coefficients in expressions for the innermost and outermost layers, and
four in each of the other layers. Equations derived from boundary condi-
tions are cascaded so that coefficients in the two layers adjacent to the
helix are obtained as linear functions of coefficients in the innermost and
outermost layers. Application of boundary conditions at the sheath helix
results in an error term allowing an iterative solution for the complex axial
propagation constant. An example of an inhomogeneous bone/muscle/
fat/skin model of the human upper arm is used to test suitability of the
helical coil in hyperthermia for the treatment of cancer. Deep, relatively
uniform, deposition of energy may be obtained.

1. INTRODUCTION

The helical coil, in addition to its use in the traveling-wave
tube (TWT) [1], has been considered for many other applications,
including drying continuous filaments by microwave heating [2]
and hyperthermia for the treatment of cancer [3]. It is necessary
to modify the original treatment by Sensiper [4] to include
regions having different dielectric properties in order to improve
the realism of modeling in some of these applications. In particu-
lar, skin—fat—-muscle dielectric layering has been shown to alter
the coupling of electromagnetic energy to the human body [5], so
such layering must be considered when modeling systems for use
in hyperthermia.

Several methods have been used to correct for the presence of
different dielectrics. An approximation valid at high frequencies
has been used to simplify the analytical solution for a sheath
helix having either coaxial dielectric layers [6] or wedge-shaped
dielectric supports that are spaced periodically in the angular
coordinate about the helix axis [7]. Equivalent circuit parameters
have also been used to obtain the approximate dispersion char-
acteristics of a helix perturbed by the presence of various dielec-
tric and metallic objects [8], [9]. In evaluation of the helical coil as
an applicator for use in hyperthermia, solutions are required for
the local field values over a wide range of frequencies. None of
the methods just described are considered suitable. A new method
having high numerical efficiency is presented in this paper.

No rigorous solution has yet been found for a helix having
realistic round wire. All work presented in this paper is for the
sheath helix model [1], [4] in which the helix is replaced with a
cylindrical shell having anisotropic conductivity that is infinite
and zero in directions, respectively, parallel and normal to the
original winding. Since all models have coaxial layering, only
azimuthally symmetric modes are considered.

II. ANALYSIS

It may be verified by direct substitution that the following
expressions correspond to a general solution of Maxwell’s equa-
tions within the ith layer of a system of N coaxial dielectric
layers:

E,;= [A,IO(T,r)+ CzKo(T,r)]e/(“’"ﬂz) (1)
Ey, = - ],rwul [B;I1(T,r)— D,Kl(’r'r)] o/ (wt=B2) 2)
E”=%[AIII(Tzr)_C,Kl(T’r)]ej(“’t_ﬁl) (3)
H, = [B,Io(’f',r)-l'D,ko('rlr)]ej(wt—,l?z) (4)
Hy, = J—‘:—e—l— [AIII(T,r)_C,Kl(‘r,r)]el(‘*’"ﬁl) (5)
Hr1=%[B,Il(’flr)—DIKl(T’r)]ej(wt—Bz) (6)
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where r is the radial distance from the axis of the helix, z is the
longitudinal coordinate parallel to the axis, w is the angular
frequency of excitation, g,, ¢; are the permeability and permittiv-
ity of the ith layer, j =y —1, and I, K, are the modified Bessel
functions of the first and second kind, respectively.

Consistency with Maxwell’s equations also requires that

e

where k, = wy/€,, and B has the same value in each layer.

Since K, (0) and I, (co) diverge [10], we require that the coeffi-
cients Cy, D, in the innermost layer (containing the axis) and A4, °
By, in the outermost (infinite) layer must be identically zero.

The number of unknown coefficients is 4(N —1). Since B is
also unknown, the total number of unknowns is 4 N — 3, Boundary
conditions provide four independent equations at each boundary.
There is one additional equation relating the sheet current density
(normalized to unity) to the magnetic field intensity in the two
dielectric layers adjacent to the helix. Thus the total number of
independent equations is 4N — 3, and the system is determined.

Others have used the high-frequency approximation 8 = 7 [6],
[7] to allow solving the system of simultaneous equations. If this
or other approximations are not used, then the dependence of the
matrix elements on the unknown parameter 8 would appear to
require that iterations be used in which a new matrix is generated
and inverted once each cycle. This would be impractical if many
coaxial layers were required. The procedure to be described has
high numerical efficiency since no matrix inversions are required.
No approximations other than the sheath helix model have been
required in this procedure.

For a boundary not on the sheath helix, it is required that E,,
Ey, D,, and H, be continuous. Let 7, be defined as the outer
radius of the ith coaxial layer. Then, using a Wronskian for
simplification, the four equations from boundary conditions may
be manipulated to give the following system for upward recursion
in the unknown coefficients:

(7

A1+1=
€Ti+1
Az[IO(Ttrt)Kl(Tz+lrx)+Gll(Ttrz)KO(TH-lrz)]
1 4
T+1h €701
+CI KO(Tzrt)Kl(Tz+1ri)_ 61_:17 Kl(Ttri)KO(Tt-)—lrz)]
(8)
CI+1=
€T+1
AI IO(Tlrl)Il(Tl+1rl)_ €1, II(Txrt)IO(Tt+1ri)
1 1
T+1h €T,
i+
+Cl KO(Ttrz)Il(TH-lrz)-l- €417 Kl(Tlrl)IO(Tt+lrl):|
)
BI+1=
BIlI BT
: O(Ttrt)Kl(Ti+1rx)+ Il(Ttrl)KO(TI+1rI)
BT
Tl BTe1
+Dl KO(Ttrt)Kl(Tl+lrr)_ Kl(Ttrt)KO(Tz+1rz)
BT,

(10)
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D1+1=

”ITI
B,[Io(v,r,)fl(v,ﬂr,)——“Il(f,r,)zo(f,ﬂr,)]
”’1+171
Tl+lrl

Ml'rl
+ Dl KO(Ttrz)Il(Tt+1rz)+M—_:KI(Ttrl)IO(Tz+lrz)]

(11)

Alternatively, the following equations may be obtained for
downward recursion in the coefficients where, again, r, must not
be the boundary at the sheath helix:

A =

1

€, 1T,
Al+l|:IO(Tz+lrt)K1(Ttrt)+ € :1111(Tt+1r1)K0(Ttk1)]
T, 7,

€ T,
+ CI+1{K0(TI+1rI)K1(TIrI)_ 61:11K1(71+1r1)K0(TIr1):|

(12)

el TI
Az+1[IO(Tz+lr1)Il(Ttr1)_ ¢ :iIII(TI+1’II)IO(TI_ rl)]
T

€l Tl
| Kalnaam) i)+ K ) ()|

(13)

’Ll Tl
Byos| Io(rar) Ky () 4 22 Il(mr,)Ko(fr,r,)]
""th+1

"'l Tl
+ Dt+1|:KO(TI+1r1)K1(TIrI)_'M_:i_lKl(Tz+1rI)K0(Tzrz)j|

(14)

1T
Bt+1[IO(T1+1rt)Il(Ttrx)_’L—:TLII(TI+1rI)IO(Ter)J

i+l

M1
+ D1+1[K0(Tt+1rt)11(71r1)+ﬁ:_lﬂKl(Tl+lrz)IO(Ttrz)j|

(15)

Equations (8)-(11) may be written in the following form:
At+1=G/;A'Az+G/I4C‘C1 (16)
Cr1=Geqa 4, + Gec G, (17)
B, ,1=Gpp B, + Gpp D, (18)
D1+1=GIDB'B1+GIDD'D1' (19)

It was noted earlier that we require C; and D; to be identically
zero. Then using (16)—(19) with i =1 results in the following:

4, =G/11A'A1 (20)

G = GéA -4, (21)
B, = G}sB‘Bl (22)
D, = G})B-Bl. (23)

Using (16)—(19) a second time, with i = 2, and (20)-(23) results
in the following:

A= [G}A'G}iA"I'GjC'GéA]Al (24)
Cy=[Ge4-Ghy+ Goc- Gyl 4y (25)
By =[G}s Ghp+ Ghp- Ghs] By (26)
D; = [GIZJB' GlleB + GZZ)D' GlDB] B,. (27

Continuing this upward cascaded recursion, it is possible to
define four y coefficients as follows:

Ay =Yaa Ay (28)
Cyr ="Yca A1 (29)
By =vpp' By (30)
Dy = vpp- B, (31)

where M is the index of the coaxial dielectric layer just inside the
helix.
Equations (12)—(15) may be written in the following form:

A,_ =X A4+ X+ C, (32)
C_1=X¢4 A+ X C, (33)
B,_=Xgp'B,+ Xpp D, (34)
D,_,=XppB,+ Xpp D, (35)

It was noted earlier that we require 4, and By, to be identically
zero. Then, using (32)—-(35), with i = N, results in the following:

Ay = X/IJVC “Cy (36)
Cyr= ch ‘Cy (37)
By 1= X}.{ZVD'DN (38)
Dy_,= XIIJVD'DN' (39)

Using (32)-(35) a second time, with' i = N —1, and (36)-(39)
results in the following:

Ay_p= [XI;VA_l' XIQIC + X,f{vc—l' ch] Cn (40)
Cy—a= [ XE7" Xje+ X251 X2c] ¢y (41)
By_p=[ X5t X5+ X5 X}p] Dy (42)
Dy_y=[X35" Xbp + X)5% X},] Dy. (43)

Continuing this downward cascaded recursion, it is possible to
define four £ coefficients as follows:

Apyr1=§4c Cn (44)
Crui1=&cc Cw (45)
Byi1=€5p" Dy (46)
Dy1y=£pp Dy. (47)

At the sheath boundary, E, and E, must be continuous. Also,
the electric field intensity parallel to the winding (E;;) must
vanish and the magnetic ficld intensity parallel to the winding
(Hy;) must be continuous. The fifth condition is that the step in
the magnetic field intensity perpendicular to the winding (H | ) at
the sheath boundary must be equal to the sheet current density of
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the helix, which is set equal to unity for normalization. Equations
(28)—(31) and (44)-(47) may be used with the five equations at
the sheath boundary so that the only coefficients remaining are
Ay, By, Cy, and Dy,. The system is overdetermined in respect to
the latter four coefficients, so that an error term results.

It is possible to define the following algorithm for solution.

1) Assume a trial value of S.

2) Determine the 7, by (7).

3) Use cascaded upward recursion to determine the four y.

4) Use cascaded downward recursion to determine the four .

5) Use the y and £ values in the five equations at the helix
boundary to solve for 4;, B;, Cy, and Dy,

6) The system is overdetermined, so an error results. If the
error is above tolerance, a correction is made in 8 and return to
Step 2.

7I)) When the error is sufficiently small, then upward and
downward recursion are used to determine the remaining coeffi-
cients.

The algorithm has the advantage that no approximation other
than the sheath helix model is required. The number of opera-
tions necessary to solve the system is linear in N and is dominated
by evaluation of the G and X terms. Procedures used for numeri-
cal implementation of the algorithm are described in the next
section.

III. NUMERICAL IMPLEMENTATION

An efficient iterative scheme must be used to find the complex
value of B8 such that a complex error term is minimized. Miller’s
method was first proposed as an efficient iterative procedure for
finding real and complex roots of a polynomial equation [11]. It
has been used successfully with a variety of more general equa-

tions, but there has been no proof of convergence in the large"

[12]. In the present work, an existing algorithm [13] for Miiller’s
method has been used. The Forsythe procedure [12] of deflation
is incorporated in the algorithm to allow locating multiple com-
plex roots which correspond to different modes of the electro-
magnetic fields. It was necessary to modify the procedure for
selecting step size in order to obtain a universal routine that has
propetly converged in all tests made thus far.

IV. EXAMPLES

The helical coil has been considered for use in hyperthermia
for the treatment of cancer [3]. For a wide range of design
parameters, a helical coil in free space will produce an electric
field that is essentially parallel with the coil axis, and relatively
uniform throughout the cross section of the coil [14], [15]. An
incident field with these properties would be expected to produce
relatively uniform deposition in a cylinder of lossy dielectric
contained within the coil. Experiments with cylindrical fat—muscle
phantom models of the human arrh and thigh have demonstrated
that it is possible to obtain deep, relatively uniform, heating of
the muscle-equivalent region [3]. No analysis of this problem has
been presented to date.

An inhomogeneous bone/muscle/fat/skin model of the hu-
man upper arm was used with the helical coil for numerical
testing. Values for the dielectric properties of the tissues were in
agreement with those reported by others [16], [17]. The helix had
a pitch angle of 3° and a radius of 5.0 cm. The model included
layers of teflon 3 and 2 mm in thickness, located just inside and
outside the helix, respectively, to support the winding and protect
the patient from possible arcing. Dimensions of the complete
8-layer model are given in Table 1.
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Fig. 1. Phase velocity as a function of frequency for a sheath helix having a

lossy dielectric cylinder on its axis.

TABLEI
INHOMOGENEOUS MODEL FOR HYPERTHERMIA
Layer Outer Radius, cm.
Bone 1.2
Muscle 3.4
Fat 3.9
Skin 4.0
Adr 4.7
Teflon 5.2
Air _—

The procedures described in this paper were used in the
analysis of 1) the model as described in Table I, 2) the model
with the teflon layers deleted, and 3) the model with the teflon
layers deleted, as well as the cylinder being replaced with homo-
geneous muscle. No evidence of numerical instability or failures
in convergence were found in these tests. Typically, the values of
B were found to converge to four-place accuracy in 12 iterations,
and six-place accuracy in 15 iterations. Additional (fictitous)
layers were added by partitioning various layers into two or more
parts having the same dielectric properties, but this caused no
significant change in the results. Two or more roots occur at
frequencies somewhat over 100 MHz, and they appear to corre-
spond to modes having differing radial dependence.

Fig. 1 shows the phase velocity (normalized relative to the
velocity of light in vacuum) as a function of frequency for the
basic model and its two variants. The increase of phase velocity
with frequency is opposite to that observed for a sheath helix in
free space [1] and is attributed to the decrease in permittivity of
tissue with increasing frequency. The teflon (dielectric constant of
2.1) causes a decrease in phase velocity at high frequencies, but
little change at low frequencies where a larger fraction of the
energy is contained within the cylinder. The homogeneous muscle
cylinder is similar to the inhomogeneous model at high frequen-
cies where the fields have reduced penetration into the model.

Fig. 2 shows the axial depth as a function of frequency for the
basic model and its two variants. Axial depth is defined as the
distance measured parallel to the helix axis for which all fields in
a traveling wave are reduced in amplitude by a factor of 1/¢. The
slight decrease of axial depth caused by the teflon would also be
seen with a decrease in helix radius. The axial depth is noticeably
greater for the homogeneous muscle cylinder than for the inho-
mogeneous model.
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within a sheath helix at 27.12 MHz.

Fig. 3 shows the specific absorption rate (SAR), normalized to
the maximum which occurs at the skin surface, as a function of
radius for a frequency of 27.12 MHz. The large decrease in
energy deposition within the bone and fat layers is largely due
to the decreased conductivity of those dielectrics. The frac-
tional change in normalized SAR is more pronounced at the
muscle-bone interface than at the muscle—fat or fat-skin in-
terfaces. This is attributed to the fact that the radial component
of the electric field is not negligible at the larger radii, so
boundary conditions require the magnitude of the electric field to
be somewhat greater in the fat layer than in the nearby regions of
muscle or skin. The slight increase of deposition in the fat layer
and decrease of deposition in the skin layer caused by the teflon
would also be seen with a decrease in helix radius, which is
consistent with the effect of teflon on axial depth.

The deep, relatively uniform, deposition of energy illustrated in
Fig. 3 is in qualitative agreement with experimental results ob-
tained using models with a thermographic camera [3] and con-
firms that the helical coil shows promise for use as an applicator
in hyperthermia.

V. CONCLUSION

The numerical method described in this paper has been found
to be useful for evaluation of the fields of a sheath helix in a
coaxially layered lossy dielectric medium. The examples pre-
sented pertain to clinical applications and support experimental
results suggesting suitability of the helical coil as an applicator in
hyperthermia.
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Impedance Calculation of Three Narrow Resonant Strips
on the Transverse Plane of a Rectangular Waveguide

KAI CHANG, MEMBER, IEEE

Abstract —A theoretical analysis has been developed to calculate the
impedance of two inductive strips and one capacitive strip located on the
transverse plane of a rectangular waveguide. The current ratios among
the strips were determined by a variational method and then used for
impedance calculations. The results can be applied to the impedance
calculations of a single capacitive strip, two inductive strips, or three
inductive strips as special cases.
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